Copied to
clipboard

G = C24.44D14order 448 = 26·7

2nd non-split extension by C24 of D14 acting via D14/D7=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C24.44D14, C23.9Dic14, C23.49(C4×D7), C22.94(D4×D7), (C22×Dic7)⋊7C4, (C22×C4).22D14, (C22×C14).60D4, (C22×C14).10Q8, C14.81(C4⋊D4), C72(C23.7Q8), C14.C429C2, C221(Dic7⋊C4), Dic73(C22⋊C4), (C2×Dic7).171D4, C23.35(C7⋊D4), C14.15(C22⋊Q8), (C23×Dic7).2C2, C2.1(Dic7⋊D4), (C23×C14).25C22, (C22×C28).21C22, C22.23(C2×Dic14), C23.275(C22×D7), C14.24(C42⋊C2), C22.41(D42D7), (C22×C14).317C23, C2.5(C22⋊Dic14), (C22×Dic7).34C22, C2.11(C23.11D14), (C2×C14)⋊1(C4⋊C4), C14.29(C2×C4⋊C4), (C2×Dic7⋊C4)⋊6C2, C2.5(C2×Dic7⋊C4), (C2×C22⋊C4).4D7, (C2×C14).30(C2×Q8), C2.27(D7×C22⋊C4), C22.121(C2×C4×D7), (C2×C14).429(C2×D4), (C14×C22⋊C4).5C2, C14.27(C2×C22⋊C4), C22.45(C2×C7⋊D4), (C2×C23.D7).4C2, (C22×C14).45(C2×C4), (C2×Dic7).92(C2×C4), (C2×C14).138(C4○D4), (C2×C14).103(C22×C4), SmallGroup(448,476)

Series: Derived Chief Lower central Upper central

C1C2×C14 — C24.44D14
C1C7C14C2×C14C22×C14C22×Dic7C23×Dic7 — C24.44D14
C7C2×C14 — C24.44D14
C1C23C2×C22⋊C4

Generators and relations for C24.44D14
 G = < a,b,c,d,e,f | a2=b2=c2=d2=1, e14=f2=b, ab=ba, ac=ca, eae-1=faf-1=ad=da, bc=cb, bd=db, be=eb, bf=fb, cd=dc, ce=ec, cf=fc, de=ed, df=fd, fef-1=ce13 >

Subgroups: 916 in 234 conjugacy classes, 87 normal (25 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C7, C2×C4, C23, C23, C23, C14, C14, C14, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C24, Dic7, Dic7, C28, C2×C14, C2×C14, C2×C14, C2.C42, C2×C22⋊C4, C2×C22⋊C4, C2×C4⋊C4, C23×C4, C2×Dic7, C2×Dic7, C2×C28, C22×C14, C22×C14, C22×C14, C23.7Q8, Dic7⋊C4, C23.D7, C7×C22⋊C4, C22×Dic7, C22×Dic7, C22×Dic7, C22×C28, C23×C14, C14.C42, C2×Dic7⋊C4, C2×C23.D7, C14×C22⋊C4, C23×Dic7, C24.44D14
Quotients: C1, C2, C4, C22, C2×C4, D4, Q8, C23, D7, C22⋊C4, C4⋊C4, C22×C4, C2×D4, C2×Q8, C4○D4, D14, C2×C22⋊C4, C2×C4⋊C4, C42⋊C2, C4⋊D4, C22⋊Q8, Dic14, C4×D7, C7⋊D4, C22×D7, C23.7Q8, Dic7⋊C4, C2×Dic14, C2×C4×D7, D4×D7, D42D7, C2×C7⋊D4, C23.11D14, C22⋊Dic14, D7×C22⋊C4, C2×Dic7⋊C4, Dic7⋊D4, C24.44D14

Smallest permutation representation of C24.44D14
On 224 points
Generators in S224
(1 102)(2 79)(3 104)(4 81)(5 106)(6 83)(7 108)(8 57)(9 110)(10 59)(11 112)(12 61)(13 86)(14 63)(15 88)(16 65)(17 90)(18 67)(19 92)(20 69)(21 94)(22 71)(23 96)(24 73)(25 98)(26 75)(27 100)(28 77)(29 129)(30 174)(31 131)(32 176)(33 133)(34 178)(35 135)(36 180)(37 137)(38 182)(39 139)(40 184)(41 113)(42 186)(43 115)(44 188)(45 117)(46 190)(47 119)(48 192)(49 121)(50 194)(51 123)(52 196)(53 125)(54 170)(55 127)(56 172)(58 204)(60 206)(62 208)(64 210)(66 212)(68 214)(70 216)(72 218)(74 220)(76 222)(78 224)(80 198)(82 200)(84 202)(85 207)(87 209)(89 211)(91 213)(93 215)(95 217)(97 219)(99 221)(101 223)(103 197)(105 199)(107 201)(109 203)(111 205)(114 163)(116 165)(118 167)(120 141)(122 143)(124 145)(126 147)(128 149)(130 151)(132 153)(134 155)(136 157)(138 159)(140 161)(142 193)(144 195)(146 169)(148 171)(150 173)(152 175)(154 177)(156 179)(158 181)(160 183)(162 185)(164 187)(166 189)(168 191)
(1 15)(2 16)(3 17)(4 18)(5 19)(6 20)(7 21)(8 22)(9 23)(10 24)(11 25)(12 26)(13 27)(14 28)(29 43)(30 44)(31 45)(32 46)(33 47)(34 48)(35 49)(36 50)(37 51)(38 52)(39 53)(40 54)(41 55)(42 56)(57 71)(58 72)(59 73)(60 74)(61 75)(62 76)(63 77)(64 78)(65 79)(66 80)(67 81)(68 82)(69 83)(70 84)(85 99)(86 100)(87 101)(88 102)(89 103)(90 104)(91 105)(92 106)(93 107)(94 108)(95 109)(96 110)(97 111)(98 112)(113 127)(114 128)(115 129)(116 130)(117 131)(118 132)(119 133)(120 134)(121 135)(122 136)(123 137)(124 138)(125 139)(126 140)(141 155)(142 156)(143 157)(144 158)(145 159)(146 160)(147 161)(148 162)(149 163)(150 164)(151 165)(152 166)(153 167)(154 168)(169 183)(170 184)(171 185)(172 186)(173 187)(174 188)(175 189)(176 190)(177 191)(178 192)(179 193)(180 194)(181 195)(182 196)(197 211)(198 212)(199 213)(200 214)(201 215)(202 216)(203 217)(204 218)(205 219)(206 220)(207 221)(208 222)(209 223)(210 224)
(1 88)(2 89)(3 90)(4 91)(5 92)(6 93)(7 94)(8 95)(9 96)(10 97)(11 98)(12 99)(13 100)(14 101)(15 102)(16 103)(17 104)(18 105)(19 106)(20 107)(21 108)(22 109)(23 110)(24 111)(25 112)(26 85)(27 86)(28 87)(29 115)(30 116)(31 117)(32 118)(33 119)(34 120)(35 121)(36 122)(37 123)(38 124)(39 125)(40 126)(41 127)(42 128)(43 129)(44 130)(45 131)(46 132)(47 133)(48 134)(49 135)(50 136)(51 137)(52 138)(53 139)(54 140)(55 113)(56 114)(57 217)(58 218)(59 219)(60 220)(61 221)(62 222)(63 223)(64 224)(65 197)(66 198)(67 199)(68 200)(69 201)(70 202)(71 203)(72 204)(73 205)(74 206)(75 207)(76 208)(77 209)(78 210)(79 211)(80 212)(81 213)(82 214)(83 215)(84 216)(141 178)(142 179)(143 180)(144 181)(145 182)(146 183)(147 184)(148 185)(149 186)(150 187)(151 188)(152 189)(153 190)(154 191)(155 192)(156 193)(157 194)(158 195)(159 196)(160 169)(161 170)(162 171)(163 172)(164 173)(165 174)(166 175)(167 176)(168 177)
(1 224)(2 197)(3 198)(4 199)(5 200)(6 201)(7 202)(8 203)(9 204)(10 205)(11 206)(12 207)(13 208)(14 209)(15 210)(16 211)(17 212)(18 213)(19 214)(20 215)(21 216)(22 217)(23 218)(24 219)(25 220)(26 221)(27 222)(28 223)(29 150)(30 151)(31 152)(32 153)(33 154)(34 155)(35 156)(36 157)(37 158)(38 159)(39 160)(40 161)(41 162)(42 163)(43 164)(44 165)(45 166)(46 167)(47 168)(48 141)(49 142)(50 143)(51 144)(52 145)(53 146)(54 147)(55 148)(56 149)(57 109)(58 110)(59 111)(60 112)(61 85)(62 86)(63 87)(64 88)(65 89)(66 90)(67 91)(68 92)(69 93)(70 94)(71 95)(72 96)(73 97)(74 98)(75 99)(76 100)(77 101)(78 102)(79 103)(80 104)(81 105)(82 106)(83 107)(84 108)(113 185)(114 186)(115 187)(116 188)(117 189)(118 190)(119 191)(120 192)(121 193)(122 194)(123 195)(124 196)(125 169)(126 170)(127 171)(128 172)(129 173)(130 174)(131 175)(132 176)(133 177)(134 178)(135 179)(136 180)(137 181)(138 182)(139 183)(140 184)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168)(169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196)(197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224)
(1 120 15 134)(2 47 16 33)(3 118 17 132)(4 45 18 31)(5 116 19 130)(6 43 20 29)(7 114 21 128)(8 41 22 55)(9 140 23 126)(10 39 24 53)(11 138 25 124)(12 37 26 51)(13 136 27 122)(14 35 28 49)(30 106 44 92)(32 104 46 90)(34 102 48 88)(36 100 50 86)(38 98 52 112)(40 96 54 110)(42 94 56 108)(57 185 71 171)(58 161 72 147)(59 183 73 169)(60 159 74 145)(61 181 75 195)(62 157 76 143)(63 179 77 193)(64 155 78 141)(65 177 79 191)(66 153 80 167)(67 175 81 189)(68 151 82 165)(69 173 83 187)(70 149 84 163)(85 137 99 123)(87 135 101 121)(89 133 103 119)(91 131 105 117)(93 129 107 115)(95 127 109 113)(97 125 111 139)(142 209 156 223)(144 207 158 221)(146 205 160 219)(148 203 162 217)(150 201 164 215)(152 199 166 213)(154 197 168 211)(170 204 184 218)(172 202 186 216)(174 200 188 214)(176 198 190 212)(178 224 192 210)(180 222 194 208)(182 220 196 206)

G:=sub<Sym(224)| (1,102)(2,79)(3,104)(4,81)(5,106)(6,83)(7,108)(8,57)(9,110)(10,59)(11,112)(12,61)(13,86)(14,63)(15,88)(16,65)(17,90)(18,67)(19,92)(20,69)(21,94)(22,71)(23,96)(24,73)(25,98)(26,75)(27,100)(28,77)(29,129)(30,174)(31,131)(32,176)(33,133)(34,178)(35,135)(36,180)(37,137)(38,182)(39,139)(40,184)(41,113)(42,186)(43,115)(44,188)(45,117)(46,190)(47,119)(48,192)(49,121)(50,194)(51,123)(52,196)(53,125)(54,170)(55,127)(56,172)(58,204)(60,206)(62,208)(64,210)(66,212)(68,214)(70,216)(72,218)(74,220)(76,222)(78,224)(80,198)(82,200)(84,202)(85,207)(87,209)(89,211)(91,213)(93,215)(95,217)(97,219)(99,221)(101,223)(103,197)(105,199)(107,201)(109,203)(111,205)(114,163)(116,165)(118,167)(120,141)(122,143)(124,145)(126,147)(128,149)(130,151)(132,153)(134,155)(136,157)(138,159)(140,161)(142,193)(144,195)(146,169)(148,171)(150,173)(152,175)(154,177)(156,179)(158,181)(160,183)(162,185)(164,187)(166,189)(168,191), (1,15)(2,16)(3,17)(4,18)(5,19)(6,20)(7,21)(8,22)(9,23)(10,24)(11,25)(12,26)(13,27)(14,28)(29,43)(30,44)(31,45)(32,46)(33,47)(34,48)(35,49)(36,50)(37,51)(38,52)(39,53)(40,54)(41,55)(42,56)(57,71)(58,72)(59,73)(60,74)(61,75)(62,76)(63,77)(64,78)(65,79)(66,80)(67,81)(68,82)(69,83)(70,84)(85,99)(86,100)(87,101)(88,102)(89,103)(90,104)(91,105)(92,106)(93,107)(94,108)(95,109)(96,110)(97,111)(98,112)(113,127)(114,128)(115,129)(116,130)(117,131)(118,132)(119,133)(120,134)(121,135)(122,136)(123,137)(124,138)(125,139)(126,140)(141,155)(142,156)(143,157)(144,158)(145,159)(146,160)(147,161)(148,162)(149,163)(150,164)(151,165)(152,166)(153,167)(154,168)(169,183)(170,184)(171,185)(172,186)(173,187)(174,188)(175,189)(176,190)(177,191)(178,192)(179,193)(180,194)(181,195)(182,196)(197,211)(198,212)(199,213)(200,214)(201,215)(202,216)(203,217)(204,218)(205,219)(206,220)(207,221)(208,222)(209,223)(210,224), (1,88)(2,89)(3,90)(4,91)(5,92)(6,93)(7,94)(8,95)(9,96)(10,97)(11,98)(12,99)(13,100)(14,101)(15,102)(16,103)(17,104)(18,105)(19,106)(20,107)(21,108)(22,109)(23,110)(24,111)(25,112)(26,85)(27,86)(28,87)(29,115)(30,116)(31,117)(32,118)(33,119)(34,120)(35,121)(36,122)(37,123)(38,124)(39,125)(40,126)(41,127)(42,128)(43,129)(44,130)(45,131)(46,132)(47,133)(48,134)(49,135)(50,136)(51,137)(52,138)(53,139)(54,140)(55,113)(56,114)(57,217)(58,218)(59,219)(60,220)(61,221)(62,222)(63,223)(64,224)(65,197)(66,198)(67,199)(68,200)(69,201)(70,202)(71,203)(72,204)(73,205)(74,206)(75,207)(76,208)(77,209)(78,210)(79,211)(80,212)(81,213)(82,214)(83,215)(84,216)(141,178)(142,179)(143,180)(144,181)(145,182)(146,183)(147,184)(148,185)(149,186)(150,187)(151,188)(152,189)(153,190)(154,191)(155,192)(156,193)(157,194)(158,195)(159,196)(160,169)(161,170)(162,171)(163,172)(164,173)(165,174)(166,175)(167,176)(168,177), (1,224)(2,197)(3,198)(4,199)(5,200)(6,201)(7,202)(8,203)(9,204)(10,205)(11,206)(12,207)(13,208)(14,209)(15,210)(16,211)(17,212)(18,213)(19,214)(20,215)(21,216)(22,217)(23,218)(24,219)(25,220)(26,221)(27,222)(28,223)(29,150)(30,151)(31,152)(32,153)(33,154)(34,155)(35,156)(36,157)(37,158)(38,159)(39,160)(40,161)(41,162)(42,163)(43,164)(44,165)(45,166)(46,167)(47,168)(48,141)(49,142)(50,143)(51,144)(52,145)(53,146)(54,147)(55,148)(56,149)(57,109)(58,110)(59,111)(60,112)(61,85)(62,86)(63,87)(64,88)(65,89)(66,90)(67,91)(68,92)(69,93)(70,94)(71,95)(72,96)(73,97)(74,98)(75,99)(76,100)(77,101)(78,102)(79,103)(80,104)(81,105)(82,106)(83,107)(84,108)(113,185)(114,186)(115,187)(116,188)(117,189)(118,190)(119,191)(120,192)(121,193)(122,194)(123,195)(124,196)(125,169)(126,170)(127,171)(128,172)(129,173)(130,174)(131,175)(132,176)(133,177)(134,178)(135,179)(136,180)(137,181)(138,182)(139,183)(140,184), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196)(197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224), (1,120,15,134)(2,47,16,33)(3,118,17,132)(4,45,18,31)(5,116,19,130)(6,43,20,29)(7,114,21,128)(8,41,22,55)(9,140,23,126)(10,39,24,53)(11,138,25,124)(12,37,26,51)(13,136,27,122)(14,35,28,49)(30,106,44,92)(32,104,46,90)(34,102,48,88)(36,100,50,86)(38,98,52,112)(40,96,54,110)(42,94,56,108)(57,185,71,171)(58,161,72,147)(59,183,73,169)(60,159,74,145)(61,181,75,195)(62,157,76,143)(63,179,77,193)(64,155,78,141)(65,177,79,191)(66,153,80,167)(67,175,81,189)(68,151,82,165)(69,173,83,187)(70,149,84,163)(85,137,99,123)(87,135,101,121)(89,133,103,119)(91,131,105,117)(93,129,107,115)(95,127,109,113)(97,125,111,139)(142,209,156,223)(144,207,158,221)(146,205,160,219)(148,203,162,217)(150,201,164,215)(152,199,166,213)(154,197,168,211)(170,204,184,218)(172,202,186,216)(174,200,188,214)(176,198,190,212)(178,224,192,210)(180,222,194,208)(182,220,196,206)>;

G:=Group( (1,102)(2,79)(3,104)(4,81)(5,106)(6,83)(7,108)(8,57)(9,110)(10,59)(11,112)(12,61)(13,86)(14,63)(15,88)(16,65)(17,90)(18,67)(19,92)(20,69)(21,94)(22,71)(23,96)(24,73)(25,98)(26,75)(27,100)(28,77)(29,129)(30,174)(31,131)(32,176)(33,133)(34,178)(35,135)(36,180)(37,137)(38,182)(39,139)(40,184)(41,113)(42,186)(43,115)(44,188)(45,117)(46,190)(47,119)(48,192)(49,121)(50,194)(51,123)(52,196)(53,125)(54,170)(55,127)(56,172)(58,204)(60,206)(62,208)(64,210)(66,212)(68,214)(70,216)(72,218)(74,220)(76,222)(78,224)(80,198)(82,200)(84,202)(85,207)(87,209)(89,211)(91,213)(93,215)(95,217)(97,219)(99,221)(101,223)(103,197)(105,199)(107,201)(109,203)(111,205)(114,163)(116,165)(118,167)(120,141)(122,143)(124,145)(126,147)(128,149)(130,151)(132,153)(134,155)(136,157)(138,159)(140,161)(142,193)(144,195)(146,169)(148,171)(150,173)(152,175)(154,177)(156,179)(158,181)(160,183)(162,185)(164,187)(166,189)(168,191), (1,15)(2,16)(3,17)(4,18)(5,19)(6,20)(7,21)(8,22)(9,23)(10,24)(11,25)(12,26)(13,27)(14,28)(29,43)(30,44)(31,45)(32,46)(33,47)(34,48)(35,49)(36,50)(37,51)(38,52)(39,53)(40,54)(41,55)(42,56)(57,71)(58,72)(59,73)(60,74)(61,75)(62,76)(63,77)(64,78)(65,79)(66,80)(67,81)(68,82)(69,83)(70,84)(85,99)(86,100)(87,101)(88,102)(89,103)(90,104)(91,105)(92,106)(93,107)(94,108)(95,109)(96,110)(97,111)(98,112)(113,127)(114,128)(115,129)(116,130)(117,131)(118,132)(119,133)(120,134)(121,135)(122,136)(123,137)(124,138)(125,139)(126,140)(141,155)(142,156)(143,157)(144,158)(145,159)(146,160)(147,161)(148,162)(149,163)(150,164)(151,165)(152,166)(153,167)(154,168)(169,183)(170,184)(171,185)(172,186)(173,187)(174,188)(175,189)(176,190)(177,191)(178,192)(179,193)(180,194)(181,195)(182,196)(197,211)(198,212)(199,213)(200,214)(201,215)(202,216)(203,217)(204,218)(205,219)(206,220)(207,221)(208,222)(209,223)(210,224), (1,88)(2,89)(3,90)(4,91)(5,92)(6,93)(7,94)(8,95)(9,96)(10,97)(11,98)(12,99)(13,100)(14,101)(15,102)(16,103)(17,104)(18,105)(19,106)(20,107)(21,108)(22,109)(23,110)(24,111)(25,112)(26,85)(27,86)(28,87)(29,115)(30,116)(31,117)(32,118)(33,119)(34,120)(35,121)(36,122)(37,123)(38,124)(39,125)(40,126)(41,127)(42,128)(43,129)(44,130)(45,131)(46,132)(47,133)(48,134)(49,135)(50,136)(51,137)(52,138)(53,139)(54,140)(55,113)(56,114)(57,217)(58,218)(59,219)(60,220)(61,221)(62,222)(63,223)(64,224)(65,197)(66,198)(67,199)(68,200)(69,201)(70,202)(71,203)(72,204)(73,205)(74,206)(75,207)(76,208)(77,209)(78,210)(79,211)(80,212)(81,213)(82,214)(83,215)(84,216)(141,178)(142,179)(143,180)(144,181)(145,182)(146,183)(147,184)(148,185)(149,186)(150,187)(151,188)(152,189)(153,190)(154,191)(155,192)(156,193)(157,194)(158,195)(159,196)(160,169)(161,170)(162,171)(163,172)(164,173)(165,174)(166,175)(167,176)(168,177), (1,224)(2,197)(3,198)(4,199)(5,200)(6,201)(7,202)(8,203)(9,204)(10,205)(11,206)(12,207)(13,208)(14,209)(15,210)(16,211)(17,212)(18,213)(19,214)(20,215)(21,216)(22,217)(23,218)(24,219)(25,220)(26,221)(27,222)(28,223)(29,150)(30,151)(31,152)(32,153)(33,154)(34,155)(35,156)(36,157)(37,158)(38,159)(39,160)(40,161)(41,162)(42,163)(43,164)(44,165)(45,166)(46,167)(47,168)(48,141)(49,142)(50,143)(51,144)(52,145)(53,146)(54,147)(55,148)(56,149)(57,109)(58,110)(59,111)(60,112)(61,85)(62,86)(63,87)(64,88)(65,89)(66,90)(67,91)(68,92)(69,93)(70,94)(71,95)(72,96)(73,97)(74,98)(75,99)(76,100)(77,101)(78,102)(79,103)(80,104)(81,105)(82,106)(83,107)(84,108)(113,185)(114,186)(115,187)(116,188)(117,189)(118,190)(119,191)(120,192)(121,193)(122,194)(123,195)(124,196)(125,169)(126,170)(127,171)(128,172)(129,173)(130,174)(131,175)(132,176)(133,177)(134,178)(135,179)(136,180)(137,181)(138,182)(139,183)(140,184), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196)(197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224), (1,120,15,134)(2,47,16,33)(3,118,17,132)(4,45,18,31)(5,116,19,130)(6,43,20,29)(7,114,21,128)(8,41,22,55)(9,140,23,126)(10,39,24,53)(11,138,25,124)(12,37,26,51)(13,136,27,122)(14,35,28,49)(30,106,44,92)(32,104,46,90)(34,102,48,88)(36,100,50,86)(38,98,52,112)(40,96,54,110)(42,94,56,108)(57,185,71,171)(58,161,72,147)(59,183,73,169)(60,159,74,145)(61,181,75,195)(62,157,76,143)(63,179,77,193)(64,155,78,141)(65,177,79,191)(66,153,80,167)(67,175,81,189)(68,151,82,165)(69,173,83,187)(70,149,84,163)(85,137,99,123)(87,135,101,121)(89,133,103,119)(91,131,105,117)(93,129,107,115)(95,127,109,113)(97,125,111,139)(142,209,156,223)(144,207,158,221)(146,205,160,219)(148,203,162,217)(150,201,164,215)(152,199,166,213)(154,197,168,211)(170,204,184,218)(172,202,186,216)(174,200,188,214)(176,198,190,212)(178,224,192,210)(180,222,194,208)(182,220,196,206) );

G=PermutationGroup([[(1,102),(2,79),(3,104),(4,81),(5,106),(6,83),(7,108),(8,57),(9,110),(10,59),(11,112),(12,61),(13,86),(14,63),(15,88),(16,65),(17,90),(18,67),(19,92),(20,69),(21,94),(22,71),(23,96),(24,73),(25,98),(26,75),(27,100),(28,77),(29,129),(30,174),(31,131),(32,176),(33,133),(34,178),(35,135),(36,180),(37,137),(38,182),(39,139),(40,184),(41,113),(42,186),(43,115),(44,188),(45,117),(46,190),(47,119),(48,192),(49,121),(50,194),(51,123),(52,196),(53,125),(54,170),(55,127),(56,172),(58,204),(60,206),(62,208),(64,210),(66,212),(68,214),(70,216),(72,218),(74,220),(76,222),(78,224),(80,198),(82,200),(84,202),(85,207),(87,209),(89,211),(91,213),(93,215),(95,217),(97,219),(99,221),(101,223),(103,197),(105,199),(107,201),(109,203),(111,205),(114,163),(116,165),(118,167),(120,141),(122,143),(124,145),(126,147),(128,149),(130,151),(132,153),(134,155),(136,157),(138,159),(140,161),(142,193),(144,195),(146,169),(148,171),(150,173),(152,175),(154,177),(156,179),(158,181),(160,183),(162,185),(164,187),(166,189),(168,191)], [(1,15),(2,16),(3,17),(4,18),(5,19),(6,20),(7,21),(8,22),(9,23),(10,24),(11,25),(12,26),(13,27),(14,28),(29,43),(30,44),(31,45),(32,46),(33,47),(34,48),(35,49),(36,50),(37,51),(38,52),(39,53),(40,54),(41,55),(42,56),(57,71),(58,72),(59,73),(60,74),(61,75),(62,76),(63,77),(64,78),(65,79),(66,80),(67,81),(68,82),(69,83),(70,84),(85,99),(86,100),(87,101),(88,102),(89,103),(90,104),(91,105),(92,106),(93,107),(94,108),(95,109),(96,110),(97,111),(98,112),(113,127),(114,128),(115,129),(116,130),(117,131),(118,132),(119,133),(120,134),(121,135),(122,136),(123,137),(124,138),(125,139),(126,140),(141,155),(142,156),(143,157),(144,158),(145,159),(146,160),(147,161),(148,162),(149,163),(150,164),(151,165),(152,166),(153,167),(154,168),(169,183),(170,184),(171,185),(172,186),(173,187),(174,188),(175,189),(176,190),(177,191),(178,192),(179,193),(180,194),(181,195),(182,196),(197,211),(198,212),(199,213),(200,214),(201,215),(202,216),(203,217),(204,218),(205,219),(206,220),(207,221),(208,222),(209,223),(210,224)], [(1,88),(2,89),(3,90),(4,91),(5,92),(6,93),(7,94),(8,95),(9,96),(10,97),(11,98),(12,99),(13,100),(14,101),(15,102),(16,103),(17,104),(18,105),(19,106),(20,107),(21,108),(22,109),(23,110),(24,111),(25,112),(26,85),(27,86),(28,87),(29,115),(30,116),(31,117),(32,118),(33,119),(34,120),(35,121),(36,122),(37,123),(38,124),(39,125),(40,126),(41,127),(42,128),(43,129),(44,130),(45,131),(46,132),(47,133),(48,134),(49,135),(50,136),(51,137),(52,138),(53,139),(54,140),(55,113),(56,114),(57,217),(58,218),(59,219),(60,220),(61,221),(62,222),(63,223),(64,224),(65,197),(66,198),(67,199),(68,200),(69,201),(70,202),(71,203),(72,204),(73,205),(74,206),(75,207),(76,208),(77,209),(78,210),(79,211),(80,212),(81,213),(82,214),(83,215),(84,216),(141,178),(142,179),(143,180),(144,181),(145,182),(146,183),(147,184),(148,185),(149,186),(150,187),(151,188),(152,189),(153,190),(154,191),(155,192),(156,193),(157,194),(158,195),(159,196),(160,169),(161,170),(162,171),(163,172),(164,173),(165,174),(166,175),(167,176),(168,177)], [(1,224),(2,197),(3,198),(4,199),(5,200),(6,201),(7,202),(8,203),(9,204),(10,205),(11,206),(12,207),(13,208),(14,209),(15,210),(16,211),(17,212),(18,213),(19,214),(20,215),(21,216),(22,217),(23,218),(24,219),(25,220),(26,221),(27,222),(28,223),(29,150),(30,151),(31,152),(32,153),(33,154),(34,155),(35,156),(36,157),(37,158),(38,159),(39,160),(40,161),(41,162),(42,163),(43,164),(44,165),(45,166),(46,167),(47,168),(48,141),(49,142),(50,143),(51,144),(52,145),(53,146),(54,147),(55,148),(56,149),(57,109),(58,110),(59,111),(60,112),(61,85),(62,86),(63,87),(64,88),(65,89),(66,90),(67,91),(68,92),(69,93),(70,94),(71,95),(72,96),(73,97),(74,98),(75,99),(76,100),(77,101),(78,102),(79,103),(80,104),(81,105),(82,106),(83,107),(84,108),(113,185),(114,186),(115,187),(116,188),(117,189),(118,190),(119,191),(120,192),(121,193),(122,194),(123,195),(124,196),(125,169),(126,170),(127,171),(128,172),(129,173),(130,174),(131,175),(132,176),(133,177),(134,178),(135,179),(136,180),(137,181),(138,182),(139,183),(140,184)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168),(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196),(197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224)], [(1,120,15,134),(2,47,16,33),(3,118,17,132),(4,45,18,31),(5,116,19,130),(6,43,20,29),(7,114,21,128),(8,41,22,55),(9,140,23,126),(10,39,24,53),(11,138,25,124),(12,37,26,51),(13,136,27,122),(14,35,28,49),(30,106,44,92),(32,104,46,90),(34,102,48,88),(36,100,50,86),(38,98,52,112),(40,96,54,110),(42,94,56,108),(57,185,71,171),(58,161,72,147),(59,183,73,169),(60,159,74,145),(61,181,75,195),(62,157,76,143),(63,179,77,193),(64,155,78,141),(65,177,79,191),(66,153,80,167),(67,175,81,189),(68,151,82,165),(69,173,83,187),(70,149,84,163),(85,137,99,123),(87,135,101,121),(89,133,103,119),(91,131,105,117),(93,129,107,115),(95,127,109,113),(97,125,111,139),(142,209,156,223),(144,207,158,221),(146,205,160,219),(148,203,162,217),(150,201,164,215),(152,199,166,213),(154,197,168,211),(170,204,184,218),(172,202,186,216),(174,200,188,214),(176,198,190,212),(178,224,192,210),(180,222,194,208),(182,220,196,206)]])

88 conjugacy classes

class 1 2A···2G2H2I2J2K4A4B4C4D4E···4L4M4N4O4P7A7B7C14A···14U14V···14AG28A···28X
order12···2222244444···4444477714···1414···1428···28
size11···12222444414···14282828282222···24···44···4

88 irreducible representations

dim1111111222222222244
type++++++++-+++-+-
imageC1C2C2C2C2C2C4D4D4Q8D7C4○D4D14D14Dic14C4×D7C7⋊D4D4×D7D42D7
kernelC24.44D14C14.C42C2×Dic7⋊C4C2×C23.D7C14×C22⋊C4C23×Dic7C22×Dic7C2×Dic7C22×C14C22×C14C2×C22⋊C4C2×C14C22×C4C24C23C23C23C22C22
# reps1221118422346312121266

Matrix representation of C24.44D14 in GL6(𝔽29)

2800000
0280000
001000
000100
000010
00002328
,
100000
010000
0028000
0002800
0000280
0000028
,
2800000
0280000
0028000
0002800
0000280
0000028
,
100000
010000
001000
000100
0000280
0000028
,
2710000
2430000
0082700
00182100
00002327
000046
,
4280000
15250000
0091600
00132000
0000155
0000714

G:=sub<GL(6,GF(29))| [28,0,0,0,0,0,0,28,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,23,0,0,0,0,0,28],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,28,0,0,0,0,0,0,28,0,0,0,0,0,0,28,0,0,0,0,0,0,28],[28,0,0,0,0,0,0,28,0,0,0,0,0,0,28,0,0,0,0,0,0,28,0,0,0,0,0,0,28,0,0,0,0,0,0,28],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,28,0,0,0,0,0,0,28],[27,24,0,0,0,0,1,3,0,0,0,0,0,0,8,18,0,0,0,0,27,21,0,0,0,0,0,0,23,4,0,0,0,0,27,6],[4,15,0,0,0,0,28,25,0,0,0,0,0,0,9,13,0,0,0,0,16,20,0,0,0,0,0,0,15,7,0,0,0,0,5,14] >;

C24.44D14 in GAP, Magma, Sage, TeX

C_2^4._{44}D_{14}
% in TeX

G:=Group("C2^4.44D14");
// GroupNames label

G:=SmallGroup(448,476);
// by ID

G=gap.SmallGroup(448,476);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,112,422,387,58,18822]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=1,e^14=f^2=b,a*b=b*a,a*c=c*a,e*a*e^-1=f*a*f^-1=a*d=d*a,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f^-1=c*e^13>;
// generators/relations

׿
×
𝔽